Pemanfaatan Panas Dinding Kompor Portabel untuk Charging Baterai Para Campers Berbasis Thermoelectric Generator
DOI:
https://doi.org/10.47134/innovative.v2i3.88Keywords:
Thermoelectric Generator, Dc – dc Converter (step up), BateraiAbstract
Camping ground adalah sebuah kegiatan rekreasi out door (luar ruangan) dengan mendirikan tenda sebagai tempat penginapan dan membutuhkan sumber listrik. Dengan memanfaatkan panas dinding kompor portabel menggunakan sebanyak 5 buah thermoelectric generator (TEG) tipe SP 1848. Serta membandingkan efisiensi dan pengaruh heatsink pada variasi media pendingin menggunakan suhu udara di dataran tinggi (natural ambient) dibantu kipas (fan) dengan menggunakan variasi media air yang disemprotkan ke sisi dingin heatsink setiap 5 menit sekali. Dengan harapan panas buang dinding kompor portabel dapat menjadi sumber energi listrik guna untuk men-charger baterai. Pada percobaan pengambilan data didapatkan hasil dari variasi cold side menggunakan variasi natural ambient (udara sekitar) mengalami penurunan tegangan di temperatur 80 ˚C. Berbanding terbalik dari hasil variasi cold side menggunakan variasi air pada temperatur 80˚C yang konstan. Hal ini disebabkan sisi dingin thermoelectric pada variasi udara mengalami ketidakstabilan pada suhu udara. Pada pengujian output dc converter ke baterai variasi cold side menggunakan udara sekitar (natural ambient), dc converter dapat menaikkan listrik dari input 2.80 v ke output 8.81 V ditemperatur 60˚C. Adapun pada pengujian output dc converter ke baterai variasi cold side menggunakan air, dc converter dapat menaikkan listrik dari input 2.76 v ke output 5.37 V ditemperatur 80 ˚C. Akan tetapi Pada penelitian kompor portabel berbasis thermoelectric generator berbasis thermoelectric generator ini mampu mencukupi kebutuhan sumber listrik pada campers.
References
Allen, D., Haugeto, R., Kajor, M., & Namazian, M. (2002). Small thermoelectric generators. International Conference on Thermoelectrics, ICT, Proceedings, 2002-Janua(2), 424–426. https://doi.org/10.1109/ICT.2002.1190351 DOI: https://doi.org/10.1109/ICT.2002.1190351
Assareh, E. (2021). A Sustainable model for the integration of solar and geothermal energy boosted with thermoelectric generators (TEGs) for electricity, cooling and desalination purpose. Geothermics, 92. https://doi.org/10.1016/j.geothermics.2021.102042 DOI: https://doi.org/10.1016/j.geothermics.2021.102042
Jouhara, H. (2021). Thermoelectric generator (TEG) technologies and applications. International Journal of Thermofluids, 9. https://doi.org/10.1016/j.ijft.2021.100063 DOI: https://doi.org/10.1016/j.ijft.2021.100063
Klara, S., & Sutrisno. (2016). Pemanfaatan Panas Gas Buang Mesin Diesel sebagai Energi Listrik. Jurnal Riset Dan Teknologi Kelautan (JRTK), 14, 113–128.
Li, Y. (2021). Si and SiGe Nanowire for Micro-Thermoelectric Generator: A Review of the Current State of the Art. Frontiers in Materials, 8. https://doi.org/10.3389/fmats.2021.611078 DOI: https://doi.org/10.3389/fmats.2021.611078
Li, Y. (2022). Exceptionally High Power Factor Ag2Se/Se/Polypyrrole Composite Films for Flexible Thermoelectric Generators. Advanced Functional Materials, 32(7). https://doi.org/10.1002/adfm.202106902 DOI: https://doi.org/10.1002/adfm.202106902
Lin, Y. (2023). Flexible, Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators. Nano-Micro Letters, 15(1). https://doi.org/10.1007/s40820-022-01003-3 DOI: https://doi.org/10.1007/s40820-022-01003-3
Luo, D. (2022). Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery. Energy, 238. https://doi.org/10.1016/j.energy.2021.121816 DOI: https://doi.org/10.1016/j.energy.2021.121816
Manab, M. A., & Fikri, A. (2020). Rancang Bangun Pembangkit Listrik Alternatif Menggunakan Termoelektrik dengan Memanfaatkan pada Tungku Pemanas. 3(2), 53–58. https://doi.org/10.33087/jepca.v3i2.41 DOI: https://doi.org/10.33087/jepca.v3i2.41
Masoumi, S. (2022). Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy, 92. https://doi.org/10.1016/j.nanoen.2021.106774 DOI: https://doi.org/10.1016/j.nanoen.2021.106774
Miao, Z. (2022). Analyzing and optimizing the power generation performance of thermoelectric generators based on an industrial environment. Journal of Power Sources, 541. https://doi.org/10.1016/j.jpowsour.2022.231699 DOI: https://doi.org/10.1016/j.jpowsour.2022.231699
Nabat, M. H. (2022). Thermodynamic and economic analyses of a novel liquid air energy storage (LAES) coupled with thermoelectric generator and Kalina cycle. Journal of Energy Storage, 45. https://doi.org/10.1016/j.est.2021.103711 DOI: https://doi.org/10.1016/j.est.2021.103711
Nuraida, F., Taryana, E., & Winanti, N. (2020). Pemanfaatan Panas Pada Kompor Gas Sebagai Energi Alternatif Menggunakan Generator Termoelektrik. Proceedings Title, 23–29.
Pahleviannur, M. R. (2022). Penentuan Prioritas Pilar Satuan Pendidikan Aman Bencana (SPAB) menggunakan Metode Analytical Hierarchy Process (AHP). Pena Persada. DOI: https://doi.org/10.31237/osf.io/6ghyz
Pahleviannur, M. R., Wulandari, D. A., Sochiba, S. L., & Santoso, R. R. (2020). Strategi Perencanaan Pengembangan Pariwisata untuk Mewujudkan Destinasi Tangguh Bencana di Wilayah Kepesisiran Drini Gunungkidul. Jurnal Pendidikan Ilmu Sosial, 29(2), 116–126. DOI: https://doi.org/10.23917/jpis.v29i2.9692
Pras Ley Bustomy, M. W. (2020). Generator Termoelektrik Dengan Memanfaatkan Panas. Jurnal Teknik Elektro, 09(02), 451–457.
Puspita, S. C., Sunarno, H., & Indarto, B. (2017). Generator Termoelektrik untuk Pengisisan Aki. Jurnal Fisika Dan Aplikasinya, 13(2), 84. https://doi.org/10.12962/j24604682.v13i2.2748 DOI: https://doi.org/10.12962/j24604682.v13i2.2748
Rafika, H., Mainil, R. I., & Aziz, A. (2017). Kaji Eksperimental Pembangkit Listrik Berbasis Thermoelectric Generator (Teg) Dengan Pendinginan Menggunakan Udara. Jurnal Sains Dan Teknologi, 15(1), 7–11.
Rafsanjani, A. A., & Kurniawan, E. (2017). Desain Dan Implementasi Generator Termoelektrik Sebagai Sumber Energi Alternatif Untuk Keperluan Darurat Design and Implementation Thermoelectric Generator. E-Proceeding of Engineering, 4(3), 3311–3316.
Ren, W. (2021). High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Science Advances, 7(7). https://doi.org/10.1126/sciadv.abe0586 DOI: https://doi.org/10.1126/sciadv.abe0586
Rösch, A. G. (2021). Fully printed origami thermoelectric generators for energy-harvesting. Npj Flexible Electronics, 5(1). https://doi.org/10.1038/s41528-020-00098-1 DOI: https://doi.org/10.1038/s41528-020-00098-1
Rosyidi, M. F., Santoso, D. B., & Nurpulaela, L. (2020). Rancang bangun kompor biomassa penghasil energi listrik untuk mengisi baterai 12 V. Teknika: Jurnal Sains Dan Teknologi, 16(2), 279. https://doi.org/10.36055/tjst.v16i2.9112 DOI: https://doi.org/10.36055/tjst.v16i2.9112
Shoeibi, S. (2022). A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications. Sustainable Energy Technologies and Assessments, 52. https://doi.org/10.1016/j.seta.2022.102105 DOI: https://doi.org/10.1016/j.seta.2022.102105
Soleimani, Z. (2021). A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials. Nano Energy, 89. https://doi.org/10.1016/j.nanoen.2021.106325 DOI: https://doi.org/10.1016/j.nanoen.2021.106325
Tohidi, F. (2022). Thermoelectric Generators: A comprehensive review of characteristics and applications. Applied Thermal Engineering, 201. https://doi.org/10.1016/j.applthermaleng.2021.117793 DOI: https://doi.org/10.1016/j.applthermaleng.2021.117793
Umboh, R. (2012). Perancangan Alat Pendinginan Portable Menggunakan Elemen Peltier. Jurnal Teknik Elektro Dan Komputer, 1(3), 1–6.
Yuan, D. (2023). Technology method and functional characteristics of road thermoelectric generator system based on Seebeck effect. Applied Energy, 331. https://doi.org/10.1016/j.apenergy.2022.120459 DOI: https://doi.org/10.1016/j.apenergy.2022.120459
Zhao, Y. (2022). Experimental investigation of heat pipe thermoelectric generator. Energy Conversion and Management, 252. https://doi.org/10.1016/j.enconman.2021.115123 DOI: https://doi.org/10.1016/j.enconman.2021.115123
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Farhan Murtadho, Rachmad Firdaus

This work is licensed under a Creative Commons Attribution 4.0 International License.