Rancang Bangun Multivoltage Input Output pada Inverter Skala Kecil (Studi Kasus: Panel Surya dan Baterai VRLA)
DOI:
https://doi.org/10.47134/innovative.v2i4.94Keywords:
Inverter, AC, DC, Mikrokontroler, Solar PanelAbstract
Dewasa ini, sangat banyak jenis peralatan elektronik skala kecil rumah tangga dengan berbagai macam fungsinya. Sebagian kecil peralatan elektronik tersebut sudah mengadopsi teknologi multi tegangan input dari 100V – 240VAC. Pengaplikasian teknologi multi tegangan input digunakan karena lebih fleksibelnya power supply dari produk tersebut untuk masuk ke suatu negara baik dengan standar input tegangan AC 100V, 110V, 220V, maupun standar lainnya sesuai rentang tegangan yang tersedia. Dibalik kelebihan teknologi multi tegangan input yang tertanam pada peralatan elektronik terdapat biaya tambahan untuk rangkaian pengkondisi tegangan yang akan menambah jumlah komponen, ruang, dan biaya desain power supply pada peralatan elektronik. Pada titik ini ditemukan ketidakefisienan teknologi multi tegangan input yang tertanam pada rangkaian power supply peralatan elektronik. Oleh sebab itu, dirancang inverter yakni sebuah rangkaian pengubah tegangan listrik searah (DC) ke tegangan bolak-balik (AC) yang dapat mengadopsi multi tegangan input dari sumber tegangan DC sekaligus dapat diatur untuk rentang tegangan keluaran AC sesuai dengan kebutuhan. Secara keseluruhan sistim pada inverter diatur oleh sebuah mikrokontroler yang menjadi pusat kendali proses inverting sinyal DC. Inverter ini dirancang untuk dapat mengubah sinyal DC fluktuatif dari baterai VRLA dengan rentang 10-13VDC dan dari solar panel 50WP dengan rentang13-18VDC menjadi sinyal AC dengan rentang 80-250VAC.
References
Ali, M., Rukslin, R., & Hasyim, C. (2021). Hybrid System of Dual Axis Photovoltaic Tracking System Using Pid-Ces-Aco. Journal of Electrical Engineering Mechatronics Computer Science, 4(2), 59–68. DOI: https://doi.org/10.26905/jeemecs.v4i2.6138
Allam, D., Kurniawan, E., & Rodiana, I. M. (2022). Design of Electrolysis Current Control in Water Ionizer With Voltage Source From Solar Energy. Journal of Electrical Engineering Mechatronics Computer Science, 5(1), 01–06. DOI: https://doi.org/10.26905/jeemecs.v5i1.6160
Anil Yamin Fajrus Sodiq, A., Rakhmawati, R., & Chusna Arif, Y. (2021). Optimizing the Use of MPPT in PLTS for Hybrid Systems by Using STS as a Transfer Switch. Journal of Electrical Engineering Mechatronics Computer Science, 4(2), 37–44. DOI: https://doi.org/10.26905/jeemecs.v4i2.6004
Ashari, I., & Faisol, A. (2020). The Analysis Of Voltage Optimization System With Parallel Series Arranger In Solar Cell. Journal of Electrical Engineering Mechatronics Computer Science, 3(2), 179–186. DOI: https://doi.org/10.26905/jeemecs.v3i2.4731
Corporation, A. (2015). Data Sheet ATmega328P (pp. 1–294).
Dash, P. S., & Das, S. P. (2022). A Single DC Source Switched-Capacitor Multilevel Inverter for High-Frequency AC System. In 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (pp. 1–4). DOI: https://doi.org/10.1109/PEDES56012.2022.10080388
Dongari, V. R., & Ganesh, P. (2016). MPPT Controlled PV for Grid-Connected Applications, 5466–5476.
Fachrudin, M. A., Abidin, Z., & Bachri, A. (2021). The Design of an Automatic Saving System for Electric Energy in Microcontroller-Based Pju Lights. Journal of Electrical Engineering Mechatronics Computer Science, 4(1), 01–08. DOI: https://doi.org/10.26905/jeemecs.v4i1.4402
Guo, Z. (2021). Highly Efficient Fully Integrated Multivoltage-Domain Power Management with Enhanced PSR and Low Cross-Regulation. IEEE Transactions on Power Electronics, 36(10), 11469–11482. https://doi.org/10.1109/TPEL.2021.3069348 DOI: https://doi.org/10.1109/TPEL.2021.3069348
Huang, W. (2023). Design of TID-Tolerant ADCs in Multivoltage Domain Based on Body Effect. IEEE Transactions on Nuclear Science, 70(10), 2278–2284. https://doi.org/10.1109/TNS.2023.3307298 DOI: https://doi.org/10.1109/TNS.2023.3307298
Jamal, Z. (2015). Implementasi Kendali Pid Penalaan Ziegler-Nichols Menggunakan Mikrokontroler. Journal of Informatics, 15(1), 81–88.
Kumar, S. P. (2022). CMOS Implementation of Multivoltage GPIO Driver. 3rd International Conference on Electronics and Sustainable Communication Systems, ICESC 2022 - Proceedings, 284–287. https://doi.org/10.1109/ICESC54411.2022.9885389 DOI: https://doi.org/10.1109/ICESC54411.2022.9885389
Lin, C. (2024). A Metastability Risk Prediction and Mitigation Technique for Clock-Domain Crossing with Single-Stage Synchronizer in Near-Threshold-Voltage Multivoltage/ Frequency-Domain Network-on-Chip. IEEE Journal of Solid-State Circuits, 59(2), 616–625. https://doi.org/10.1109/JSSC.2023.3283961 DOI: https://doi.org/10.1109/JSSC.2023.3283961
Lin, Y., Seo, G.-S., Vijayshankar, S., Johnson, B., & Dhople, S. (2021). Impact of Increased Inverter-based Resources on Power System Small-signal Stability. In 2021 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1–5). DOI: https://doi.org/10.1109/PESGM46819.2021.9638094
Mu, H. (2021). Impedance-Based Stability Analysis Methods for DC Distribution Power System with Multivoltage Levels. IEEE Transactions on Power Electronics, 36(8), 9193–9208. https://doi.org/10.1109/TPEL.2021.3057874 DOI: https://doi.org/10.1109/TPEL.2021.3057874
Nugraha, A. T., Ramadhan, M. F., & Shiddiq, M. J. (2022). Efficiency of the Position Tracking Photovoltaics using Microcontroller Atmega. Journal of Electrical Engineering Mechatronics Computer Science, 5(2), 77–90. DOI: https://doi.org/10.26905/jeemecs.v5i2.6031
Pahleviannur, M. R. (2022). Penentuan Prioritas Pilar Satuan Pendidikan Aman Bencana (SPAB) menggunakan Metode Analytical Hierarchy Process (AHP). Pena Persada. DOI: https://doi.org/10.31237/osf.io/6ghyz
Pahleviannur, M. R., Wulandari, D. A., Sochiba, S. L., & Santoso, R. R. (2020). Strategi Perencanaan Pengembangan Pariwisata untuk Mewujudkan Destinasi Tangguh Bencana di Wilayah Kepesisiran Drini Gunungkidul. Jurnal Pendidikan Ilmu Sosial, 29(2), 116–126. DOI: https://doi.org/10.23917/jpis.v29i2.9692
Pan, P. (2020). An Impedance-Based Stability Assessment Methodology for DC Distribution Power System with Multivoltage Levels. IEEE Transactions on Power Electronics, 35(4), 4033–4047. https://doi.org/10.1109/TPEL.2019.2936527 DOI: https://doi.org/10.1109/TPEL.2019.2936527
Qanbari, T., & Tousi, B. (2021). Single-Source Three-Phase Multilevel Inverter Assembled by Three-Phase Two-Level Inverter and Two Single-Phase Cascaded H-Bridge Inverters. IEEE Transactions on Power Electronics, 36(5), 5204–5212. DOI: https://doi.org/10.1109/TPEL.2020.3029870
Rodriguez-Estrada, H. (2023). Novel Multibus Multivoltage Concept for DC-Microgrids in Buildings: Modeling, Design and Local Control. Applied Sciences (Switzerland), 13(4). https://doi.org/10.3390/app13042405 DOI: https://doi.org/10.3390/app13042405
Sulistiyowati, I., & Muhyiddin, M. I. (2021). Disinfectant Spraying Robot to Prevent the Transmission of the Covid-19 Virus Based on the Internet of Things (IoT). Journal of Electrical Technology UMY, 5(2), 61–67. DOI: https://doi.org/10.18196/jet.v5i2.12363
Sulistiyowati, I., Jamaaluddin, J., & Anshory, I. (2022). Hybrid Energy Storage Performance Evaluation of Fuel Cell Injection on Standalone Photovoltaic System. Journal of Electrical Technology UMY, 6(1), 41–48. DOI: https://doi.org/10.18196/jet.v6i1.14841
Suwenda, F. P., Abidin, Z., & Ilmi, U. (2021). The Utilization of Solar Cells and Water Turbines As Sourcing Voltage on Power Multi-Based Hydroponic. Journal of Electrical Engineering Mechatronics Computer Science, 4(1), 15–20. DOI: https://doi.org/10.26905/jeemecs.v4i1.4413
Wan, X. (2020). Coordinated control for power balance based on per-unit voltage for multivoltage-level DC microgrid. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration: Connecting the Grids Towards a Low-Carbon High-Efficiency Energy System, EI2 2020, 3755–3760. https://doi.org/10.1109/EI250167.2020.9347212 DOI: https://doi.org/10.1109/EI250167.2020.9347212
Wei, J. (2023). A Multienergy Computed Tomography Method Based on a Blind Decomposition Model for Multivoltage X-Ray Transmission Images. IEEE Transactions on Instrumentation and Measurement, 72. https://doi.org/10.1109/TIM.2023.3246472 DOI: https://doi.org/10.1109/TIM.2023.3246472
Xu, H. (2020). Neural-Network-Based Energy Calculation for Multivoltage Threshold Sampling. IEEE Transactions on Radiation and Plasma Medical Sciences, 4(3), 311–318. https://doi.org/10.1109/TRPMS.2019.2960129 DOI: https://doi.org/10.1109/TRPMS.2019.2960129
Zhou, J., Zhang, R., Zhang, X., Wu, J., & Huang, W. (2018). A Compound Control Strategy for Inverter Output Voltage in Micro-grid System. In 2018 IEEE 4th Southern Power Electronics Conference (SPEC) (pp. 1–5). DOI: https://doi.org/10.1109/SPEC.2018.8635643
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Miftah Nur Hafidz, Indah Sulistiyowati

This work is licensed under a Creative Commons Attribution 4.0 International License.