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Introduction

The study of periodic points for mappings has long been a central theme in dynamical
systems theory, providing fundamental insights into the long-term behavior of iterative
processes. Periodic points, which return to their initial state after a fixed number of
iterations, are crucial for understanding stability, bifurcations, and other essential
characteristics of dynamical systems.

While analytical solutions for periodic points are often elusive, numerical methods
offer a powerful approach to approximate these points and explore the dynamics of
mappings. This paper focuses on the numerical approximation of periodic points for specific
classes of mappings, aiming to develop and analyze efficient and reliable algorithms for this
purpose.

By combining theoretical foundations with computational techniques, we seek to
advance our understanding of the complex behavior exhibited by various mappings and
contribute to the broader field of dynamical systems.
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Methodology
The logistic map, as described in [1]

Xp = Xp(1—X,)
where X, is a number between 0 and 1, the parameter I' are those in the interval [0,4]
mean the condition for living in the island. After linear transformations we can consider the
following as logistic mapping;:
Xps1 = Xg +C (1)
but here, the parameter C changes between [—2;0.25] and the number of population
| X, |- The learning of the asymptotics of trajectories of the mapping (1) is called the problem

of Von Neumann - Ulam [2].

Two dimensional case of the mapping (1) is

r— 2
F .X_y+C11

: (2)
T2y =x%+c,.
where (X,Y) € R? and (c,cy) € R,
Our mathematical model of the population in the connected two islands is
2
X = + G,
F0102 . 1= Yn T0 3)

Yni1 = Xg +Ca.

where | X | is the initial number of the population of first island and | Y | is the initial
number of the population of second island in millions. For example, | Xy |[= 0.02 means the
initial number of population of first island is 20000. C; and C, are the living conditions in
the islands respectively. | X, | and | Y, | are the numbers of N — th generation of populations

tirst and second island.
To find the points where the period of mapping (2) is equal to four, it is necessary to

solve the following equations

2 2
2 2
[(x +02j +c1] +02J +c1—x=0,
2

) 2. F v
(y +c1j +Cy| +C | +Cy—Yy 0.

Among the solutions of this system of equations are also points whose periods are

equal to two. To separate them and leave only the equation of four points of period, we
must divide the equations in the system of equations into the following two equations

accordingly
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x* +20,%% —x+C5 +¢, Ba y*+2cy? —y+c?+c,.
In this case, the following system of equations is formed

X2 +6¢,x™% + x° + (15¢3 +3¢;)x® + 4c,x” + (20c3 +12¢,c, +1)x° +
+(2¢, + 6¢2)x° + (3c? + 4c, +18c,c2 +15¢5)x* + (1+ 4cc, + 4cd)x® +
+ (¢, + 6¢2c, +5¢2 +12¢,C3 + 6¢5)x% + (¢2 + 2C, + 2¢6,C2 +C5 )X +

+¢f +3c,Cy + 2¢5 +3c2cs + 2¢,c, + €2 +1=0,

y2 +6c,y*° + y® + (15¢2 +3¢,) y® + 4c,y’ + (20c +12¢,c, +1)y® +
+(2c, +6¢7)y° + (3c2 + 4c, +18c,¢7 +15¢)y* + (1+4cc, +4c)y® +
+(c, +6C3c, +5¢2 +12¢,62 +6¢7)y? + (C3 + 2¢, + 2¢,¢2 + ¢ )y +

+¢S +3c,¢ +2¢2 +3c?c? + 2¢,c, +C5 +1=0.

According to Abel’s theorem, these equations cannot be solved analytically in the
general case. Therefore, we solve it using approximate solution methods for certain values
of the parameters.

¢, =—0.02 1op5 solve approximately.

For example @~ %% and
0.099144+0.919616 x -1.09315 x? +1.07837 x> + 2.79415 x* -1.9576 x° +

+1.23504 x% -0.08 x” -2.934 x® + x° -0.12 x*° + x*? = 0,

-0.0115392-1.07565y - 0.417991y? - 2.68637 y° + 9.57098 y* +5.7224 y® -
-17.5886y°® -3.92y’ +14.346y® + y° -5.88y'% + y'? = 0.

The equations in this system of equations are not related to each other so we solve them

separately.

a. First
0.099144+0.919616 x -1.09315 x> +1.07837 x> + 2.79415 x* -1.9576 x° +
+1.23504 x° -0.08 x” - 2.934 x® + x°-0.12x*° + x*?* =0
We solve numerical solutions of the equation using approximate methods. To do this,

we find the gap where all the solutions are located.

A=max{ay| [a,],... {a,|} = 2.934, R =1+® =1+&134 =3.934,

This means that all solutions are in the interval (~3.934,3.934) .

1Eo = f f1 fz f3 f4 fs f6 f7 fs f9 flO f11 f12

- + + - - + + + - - + - 7

-3.934
3.934 + + + + - + + - - + - - -
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Result and Discussion
We can see that there are two real solutions to the equation. Algorithm:

1.

We divide the interval (—3.934,3.934) into two equal parts and check which interval has
a solution using the Sturm theorem for each of these intervals. If there is only one
solution in each interval, we find approximate solutions using an arbitrary one of the
methods of dividing the section into two equal parts, watts, and attempts to find
solutions for each interval.
If more than one solution is in the same interval, then we apply the Sturm theorem again
by dividing the interval into three equal parts. If several more solutions remain in the
same interval, we will continue to use Sturm’s theorem to divide the interval into four,
five, six, and so on. We stop when there is only one solution or no solution in each
interval.
Then we find the approximate solutions using the arbitrary one of the methods of
dividing the section into two equal parts, watts and attempts, to separate the intervals
in which there is a solution and find the solutions in each interval.
For the second equation, we use the same algorithm.

b. The second

-0.0115392-1.07565y - 0.417991y? - 2.68637 y° +9.57098 y* +5.7224 y° -
-17.5886 y® -3.92y’ +14.346 y® +y° -5.88y'° + y'? =0

We solve numerical solutions of the equation using approximate methods. To do this, we

find the gap where all the solutions are located

o A 175888 16 5ggs.
2| 1

(—18.5886,18.5886)

A=max{a|,[a,),... |a,|} = 17.5886, R=1

This means that all solutions are in the interval .
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g =-0.0115392-1.07565y - 0.417991y? - 2.68637 y* +9.57098 y* +5.7224 y° -

-17.5886y° -3.92y’ +14.346 y® +y° -5.88y*0 + y'?,
g, = -1.07565-0.835981y -8.0591y? +38.2839 y* + 28.612 y* -105.532 y° -
-27.44y° +114.768y" +9y® -58.8y9+12y™,
g, = 0.0115392+0.986011y + 0.348326 y* + 2.01478 y* - 6.38065 y* - 3.33807 y° +
+8.79432y® +1.63333y’ -4.782y® -0.25y° +0.98 y*°,

0; = 1.11169+4.05728y + 21.2208 y? - 27.7251y* - 23.8725y* +16.9743y° +
+14.0365y° -1.98041y" -3.93753y® - 0.536027 y*,

0, = 15.437+53.3631y + 287.127 y? - 426.092 y* - 274.673y" + 282.865y° +

+155.229y% -54.8164y" - 46.3148 y®,
gs = -0.0107472-0.0728328y-0.125708 y2 + 0.659926 y* - 0.648162 y* +0.0203181y° +
+0.307983y° -0.132465y ",

Us = -28.6209-146.467 y - 466.802 y* +1191.69 y* - 289.711y* - 484.562 y° + 229.686 y°,
g; =0.00719286+0.0711498 y + 0.152208 y? - 0.242717 y* - 0.0750924 y* + 0.0865886 y° ,
0g = 4.9153-68.943y +153.899 y? +11.987 y* -106.64 y*,
gy = -0.00418028-0.117396y - 0.00190424 y2 +0.125103y3,

U = -5.26161+62.781y-53.9861y?,

g, = 0.0181738-0.037381y
g;, = -12.5005

9 =9 O 09, 93 04 95 G 97 Os G99 OG0 G171 G0

-18.5886 + - + + - + N j _
18.5886 + + + - - - +

We can see that there are two real solutions to the equation.

As a result,
X, =-0.9798840171550919, X, =-0.09607531847629341

y; =-0.01076953317967882, y, =0.9401726870760027.

This means that the four periods of a given mapping have four equal points.

(x,,y;)=(-0.9798840171550919, - 0.01076953317967882),
(x,,¥,)=(-0.9798840171550919, 0.9401726870760027 ),
(X,,y;)=(-0.09607531847629341, -0.01076953317967882),
(X,,Y,)=(-0.09607531847629341, 0.9401726870760027 ).
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At these points, we examine the spectra of the mapping given. That is, we find the
modulus of the values of the equations in a given system of equations at points X and vy,

respectively. It follows that this period is attractive because the absolute values of multiplier

smaller then one.

Discussion.

For our mapping (2).

. - X'=y2+01,
C1C2 - r— 2
y =X +0Cs.

(4)
e : . 1 NG
If ¢,=c,=-1 then all point of out site the rectangle |X|< §(1+ 5),

1
|y € E (1++/5) tend to infinity. Some inside points tend to fixed points (—1,0) or (0,-1).

And some inside points tend to periodic points with period two (0,0) and (-1,-1).
For example X, = 0.776, y, = —0.36.

n Xp Yn

n=1 -0,8704 -0,397824

n= 2 -0,841736065024 -0,24240384

n= 3 -0,941240378353254 -0,291480396837912
n= ]_0 -0,999970282135738 -3,57147346333631E-6
n=11 -0,999999999987245 -5,94348453725036E-5
n= 12 0,999999996467499 -2,551092670E-11
n=13 -1 -7,0650016823E-9
n=14 -1 0

For (32) when ¢; = C, = —1 then filled Julia set Fig. 2.3.1.
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Figure 1. For C; = C, = —1 the classification of Julia set.

Let ¢, = —0.98, ¢, = —0.02 then all point in Julia set tend to the periodic points with period

four.

For example X, = 0.06, y, = —0.36.

n Xn Yn
n=1 -0,97973104 0,70318016
n=16 0,0960753164810756 -0,0107895746542244
n=17 -0,979883585078781 -0,0107695335630612
n=18 -0,979884017146834 0,940171840306845
n=19 -0,0960769106940412 0,940172687059817
n=20 -0,0960753185067235 -0,0107692272314892

Let ¢, = —1.22, ¢, = —0.38 then all point in Julia set tend to the periodic points with period

eight but there are two cyclical points with period eight.
Classification all Cauchy problems for ¢; = —1.22, ¢, = —0.38 on the Figure 2.3.2.
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n |r| -

Figure 2. For C; = -1.22, Cr, = —0.38 the classification of Julia set.

Classification all Cauchy problems for ¢, = —1.19, ¢, = —0.44. period 16, we get Fig.
2.3.3.

Figure 3. Classification all Cauchy problems for -1.19,¢, =-0.44 Period 3 and 6.
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c,=-1.19,¢, = —-0.44

Figure 4. For the classification of Julia set

Classification all Cauchy problems for C;, = —-1.31, C, = —0.8. Strange attractor.

Conclusion

In conclusion, our study contributes to the broader understanding of quadratic
mappings and their applications in ecological modeling. By elucidating the dynamics of
periodic points, we pave the way for further research into the stability and resilience of
population systems in complex environments. As we move forward, future research may
explore additional dimensions of the mapping and consider more sophisticated numerical
techniques for analyzing periodic orbits. Furthermore, the application of our findings in
ecological modeling may lead to practical insights for managing and conserving natural
ecosystems. Overall, our study represents a step towards unraveling the complexities of
dynamical systems in ecological settings, offering new avenues for exploration and
application in population ecology and related fields.
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